(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
fib(mark(X)) →+ mark(fib(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / mark(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
active(fib(N)) → mark(sel(N, fib1(s(0'), s(0'))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0', X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0', cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0') → ok(0')
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
active,
sel,
fib1,
s,
cons,
add,
fib,
proper,
topThey will be analysed ascendingly in the following order:
sel < active
fib1 < active
s < active
cons < active
add < active
fib < active
active < top
sel < proper
fib1 < proper
s < proper
cons < proper
add < proper
fib < proper
proper < top
(8) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
sel, active, fib1, s, cons, add, fib, proper, top
They will be analysed ascendingly in the following order:
sel < active
fib1 < active
s < active
cons < active
add < active
fib < active
active < top
sel < proper
fib1 < proper
s < proper
cons < proper
add < proper
fib < proper
proper < top
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sel(
gen_0':mark:ok3_0(
+(
1,
n5_0)),
gen_0':mark:ok3_0(
b)) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
sel(gen_0':mark:ok3_0(+(1, 0)), gen_0':mark:ok3_0(b))
Induction Step:
sel(gen_0':mark:ok3_0(+(1, +(n5_0, 1))), gen_0':mark:ok3_0(b)) →RΩ(1)
mark(sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
fib1, active, s, cons, add, fib, proper, top
They will be analysed ascendingly in the following order:
fib1 < active
s < active
cons < active
add < active
fib < active
active < top
fib1 < proper
s < proper
cons < proper
add < proper
fib < proper
proper < top
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fib1(
gen_0':mark:ok3_0(
+(
1,
n1209_0)),
gen_0':mark:ok3_0(
b)) →
*4_0, rt ∈ Ω(n1209
0)
Induction Base:
fib1(gen_0':mark:ok3_0(+(1, 0)), gen_0':mark:ok3_0(b))
Induction Step:
fib1(gen_0':mark:ok3_0(+(1, +(n1209_0, 1))), gen_0':mark:ok3_0(b)) →RΩ(1)
mark(fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
s, active, cons, add, fib, proper, top
They will be analysed ascendingly in the following order:
s < active
cons < active
add < active
fib < active
active < top
s < proper
cons < proper
add < proper
fib < proper
proper < top
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
s(
gen_0':mark:ok3_0(
+(
1,
n2717_0))) →
*4_0, rt ∈ Ω(n2717
0)
Induction Base:
s(gen_0':mark:ok3_0(+(1, 0)))
Induction Step:
s(gen_0':mark:ok3_0(+(1, +(n2717_0, 1)))) →RΩ(1)
mark(s(gen_0':mark:ok3_0(+(1, n2717_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
cons, active, add, fib, proper, top
They will be analysed ascendingly in the following order:
cons < active
add < active
fib < active
active < top
cons < proper
add < proper
fib < proper
proper < top
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
cons(
gen_0':mark:ok3_0(
+(
1,
n3401_0)),
gen_0':mark:ok3_0(
b)) →
*4_0, rt ∈ Ω(n3401
0)
Induction Base:
cons(gen_0':mark:ok3_0(+(1, 0)), gen_0':mark:ok3_0(b))
Induction Step:
cons(gen_0':mark:ok3_0(+(1, +(n3401_0, 1))), gen_0':mark:ok3_0(b)) →RΩ(1)
mark(cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
add, active, fib, proper, top
They will be analysed ascendingly in the following order:
add < active
fib < active
active < top
add < proper
fib < proper
proper < top
(21) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
add(
gen_0':mark:ok3_0(
+(
1,
n5220_0)),
gen_0':mark:ok3_0(
b)) →
*4_0, rt ∈ Ω(n5220
0)
Induction Base:
add(gen_0':mark:ok3_0(+(1, 0)), gen_0':mark:ok3_0(b))
Induction Step:
add(gen_0':mark:ok3_0(+(1, +(n5220_0, 1))), gen_0':mark:ok3_0(b)) →RΩ(1)
mark(add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(22) Complex Obligation (BEST)
(23) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
fib, active, proper, top
They will be analysed ascendingly in the following order:
fib < active
active < top
fib < proper
proper < top
(24) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fib(
gen_0':mark:ok3_0(
+(
1,
n7542_0))) →
*4_0, rt ∈ Ω(n7542
0)
Induction Base:
fib(gen_0':mark:ok3_0(+(1, 0)))
Induction Step:
fib(gen_0':mark:ok3_0(+(1, +(n7542_0, 1)))) →RΩ(1)
mark(fib(gen_0':mark:ok3_0(+(1, n7542_0)))) →IH
mark(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(25) Complex Obligation (BEST)
(26) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
fib(gen_0':mark:ok3_0(+(1, n7542_0))) → *4_0, rt ∈ Ω(n75420)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
active, proper, top
They will be analysed ascendingly in the following order:
active < top
proper < top
(27) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol active.
(28) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
fib(gen_0':mark:ok3_0(+(1, n7542_0))) → *4_0, rt ∈ Ω(n75420)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
proper, top
They will be analysed ascendingly in the following order:
proper < top
(29) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol proper.
(30) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
fib(gen_0':mark:ok3_0(+(1, n7542_0))) → *4_0, rt ∈ Ω(n75420)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
The following defined symbols remain to be analysed:
top
(31) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(32) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
fib(gen_0':mark:ok3_0(+(1, n7542_0))) → *4_0, rt ∈ Ω(n75420)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(34) BOUNDS(n^1, INF)
(35) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
fib(gen_0':mark:ok3_0(+(1, n7542_0))) → *4_0, rt ∈ Ω(n75420)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(36) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(37) BOUNDS(n^1, INF)
(38) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
add(gen_0':mark:ok3_0(+(1, n5220_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n52200)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(39) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(40) BOUNDS(n^1, INF)
(41) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
cons(gen_0':mark:ok3_0(+(1, n3401_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n34010)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(42) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(43) BOUNDS(n^1, INF)
(44) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
s(gen_0':mark:ok3_0(+(1, n2717_0))) → *4_0, rt ∈ Ω(n27170)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(45) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(46) BOUNDS(n^1, INF)
(47) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
fib1(gen_0':mark:ok3_0(+(1, n1209_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n12090)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(48) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(49) BOUNDS(n^1, INF)
(50) Obligation:
TRS:
Rules:
active(
fib(
N)) →
mark(
sel(
N,
fib1(
s(
0'),
s(
0'))))
active(
fib1(
X,
Y)) →
mark(
cons(
X,
fib1(
Y,
add(
X,
Y))))
active(
add(
0',
X)) →
mark(
X)
active(
add(
s(
X),
Y)) →
mark(
s(
add(
X,
Y)))
active(
sel(
0',
cons(
X,
XS))) →
mark(
X)
active(
sel(
s(
N),
cons(
X,
XS))) →
mark(
sel(
N,
XS))
active(
fib(
X)) →
fib(
active(
X))
active(
sel(
X1,
X2)) →
sel(
active(
X1),
X2)
active(
sel(
X1,
X2)) →
sel(
X1,
active(
X2))
active(
fib1(
X1,
X2)) →
fib1(
active(
X1),
X2)
active(
fib1(
X1,
X2)) →
fib1(
X1,
active(
X2))
active(
s(
X)) →
s(
active(
X))
active(
cons(
X1,
X2)) →
cons(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
active(
X1),
X2)
active(
add(
X1,
X2)) →
add(
X1,
active(
X2))
fib(
mark(
X)) →
mark(
fib(
X))
sel(
mark(
X1),
X2) →
mark(
sel(
X1,
X2))
sel(
X1,
mark(
X2)) →
mark(
sel(
X1,
X2))
fib1(
mark(
X1),
X2) →
mark(
fib1(
X1,
X2))
fib1(
X1,
mark(
X2)) →
mark(
fib1(
X1,
X2))
s(
mark(
X)) →
mark(
s(
X))
cons(
mark(
X1),
X2) →
mark(
cons(
X1,
X2))
add(
mark(
X1),
X2) →
mark(
add(
X1,
X2))
add(
X1,
mark(
X2)) →
mark(
add(
X1,
X2))
proper(
fib(
X)) →
fib(
proper(
X))
proper(
sel(
X1,
X2)) →
sel(
proper(
X1),
proper(
X2))
proper(
fib1(
X1,
X2)) →
fib1(
proper(
X1),
proper(
X2))
proper(
s(
X)) →
s(
proper(
X))
proper(
0') →
ok(
0')
proper(
cons(
X1,
X2)) →
cons(
proper(
X1),
proper(
X2))
proper(
add(
X1,
X2)) →
add(
proper(
X1),
proper(
X2))
fib(
ok(
X)) →
ok(
fib(
X))
sel(
ok(
X1),
ok(
X2)) →
ok(
sel(
X1,
X2))
fib1(
ok(
X1),
ok(
X2)) →
ok(
fib1(
X1,
X2))
s(
ok(
X)) →
ok(
s(
X))
cons(
ok(
X1),
ok(
X2)) →
ok(
cons(
X1,
X2))
add(
ok(
X1),
ok(
X2)) →
ok(
add(
X1,
X2))
top(
mark(
X)) →
top(
proper(
X))
top(
ok(
X)) →
top(
active(
X))
Types:
active :: 0':mark:ok → 0':mark:ok
fib :: 0':mark:ok → 0':mark:ok
mark :: 0':mark:ok → 0':mark:ok
sel :: 0':mark:ok → 0':mark:ok → 0':mark:ok
fib1 :: 0':mark:ok → 0':mark:ok → 0':mark:ok
s :: 0':mark:ok → 0':mark:ok
0' :: 0':mark:ok
cons :: 0':mark:ok → 0':mark:ok → 0':mark:ok
add :: 0':mark:ok → 0':mark:ok → 0':mark:ok
proper :: 0':mark:ok → 0':mark:ok
ok :: 0':mark:ok → 0':mark:ok
top :: 0':mark:ok → top
hole_0':mark:ok1_0 :: 0':mark:ok
hole_top2_0 :: top
gen_0':mark:ok3_0 :: Nat → 0':mark:ok
Lemmas:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_0':mark:ok3_0(0) ⇔ 0'
gen_0':mark:ok3_0(+(x, 1)) ⇔ mark(gen_0':mark:ok3_0(x))
No more defined symbols left to analyse.
(51) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
sel(gen_0':mark:ok3_0(+(1, n5_0)), gen_0':mark:ok3_0(b)) → *4_0, rt ∈ Ω(n50)
(52) BOUNDS(n^1, INF)